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1. The inelastic Boltzmann equation, collision 
rules, collision rates, 

2. Extreme statistics, linear Boltzmann equation
3. Stationary solutions
4. Driven steady states
5. Time dependent solutions



The Inelastic Boltzmann equation (1D)The Inelastic Boltzmann equation (1D)

Collision rule (linear)

General collision rate 

Boltzmann equation (nonlinear and nonlocal)

collision rate gain loss

Theory: non-linear, non-local, dissipative



The Inelastic Boltzmann equationThe Inelastic Boltzmann equation

What is the solution of this equation?
What is the nature of the velocity distribution?

Spatially homogeneous systems



Inelastic Collisions (1D)Inelastic Collisions (1D)

Relative velocity reduced by

Momentum is conserved 

Energy is dissipated

Limiting cases  



Inelastic Collisions (any D)Inelastic Collisions (any D)

Normal relative velocity reduced by

Momentum conservation

Energy loss

Limiting cases  



The collision rateThe collision rate

Collision rate

Collision rate related to interaction potential (elastic)

Balance kinetic and potential energy

Collisional cross-section



The Inelastic Boltzmann equationThe Inelastic Boltzmann equation

What is the solution of this equation?
What is the nature of the velocity distribution?

Spatially homogeneous systems



Homogeneous cooling state: temperature decayHomogeneous cooling state: temperature decay

Energy loss
Collision rate
Energy balance equation

Temperature decays, system comes to rest 

Trivial stationary solution

Haff, JFM 1982



Homogeneous cooling states: similarity solutionsHomogeneous cooling states: similarity solutions

Similarity solution

Stretched exponentials (overpopulation)

Esipov, Poeschel 97



Are there nontrivial stationary solutions?Are there nontrivial stationary solutions?

Stationary Boltzmann equation

Naive answer: NO!
According to the energy balance equation

Dissipation rate is positive

collision rate gain loss



An exact solution (1D, λ=0)An exact solution (1D, λ=0)

One-dimensional Maxwell molecules
Fourier transform obeys a closed equation

Exponential solution

Lorentzian velocity distribution

A nontrivial stationary solution does exist!

Lamboitte & Brenig, unpub



Properties of stationary solutionProperties of stationary solution

Perfect balance between collisional loss and gain
Purely collisional dynamics (no source term)
Family of solutions: scale invariance v v/v0

Power-law high-energy tail

Infinite energy, infinite dissipation rate!

Are these stationary solutions physical?



Extreme Statistics (1D)Extreme Statistics (1D)

Collision rule: arbitrary velocities

Large velocities: linear but nonlocal process

High-energies: linear equation

gain lossgain

Linear, nonlocal evolution equation

Ernst, Goldhirsh



Stationary solution (1D)Stationary solution (1D)

High-energies: linear equation

Power-law tail
gainloss gain



Energy Cascades (1D)Energy Cascades (1D)

Energetic particles “see” a static medium



Extreme Statistics (any D)Extreme Statistics (any D)

Collision process: large velocities

Stretching parameters related to impact angle

Energy decreases, velocity magnitude increases

Linear equation



Power-laws are genericPower-laws are generic

Velocity distribution always has power-law tail

Characteristic exponent varies with parameters

Tight bounds
Elastic limit is singular

Dissipation rate always divergent
Energy finite or infinite



The characteristic exponent σ (d=2,3)The characteristic exponent σ (d=2,3)

σ varies with spatial dimension, collision rules



Monte Carlo Simulations: Driven Steady StatesMonte Carlo Simulations: Driven Steady States

Compact initial distribution
Inject energy at very large 
velocity scales only
Maintain constant total 
energy
“Lottery” implementation: 
– Keep track of total energy 

dissipated, ET

– With small rate, boost a particle 
by ET

Excellent agreement between theory and simulation



Further confirmation: extremal statisticsFurther confirmation: extremal statistics

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)



Injection, cascade, dissipationInjection, cascade, dissipation

Energy is injected ONLY AT LARGE VELOCITY SCALES!
Energy cascades from large velocities to small velocities
Energy dissipated at small velocity scales

Experimental 
realization?

Energetic particle 
“shot” into static 

medium

Energy balance



Conventional forced steady statesConventional forced steady states

Energy injection: thermal forcing (at all scales)

Energy dissipation: inelastic collision

Steady state equation

Stretched exponentials

T van Noije, M Ernst 97



Nonequilibrium velocity distributionsNonequilibrium velocity distributions

A Mechanically vibrated beads
F Rouyer & N Menon 00

B Electrostatically driven powders
I Aronson, J Olafsen, EB PRL 05

Gaussian core
Overpopulated tail

Kurtosis Excellent agreement between 
theory and experiment

balance between 
collisional dissipation, 

energy injection from walls



Energy balanceEnergy balance

Energy injection rate
Energy injection scale
Typical velocity scale
Balance between energy injection and dissipation 

For “lottery” injection: injection scale diverges with 
injection rate

Energy injection selects stationary solution



Time dependent solutions (1D, λ>0)Time dependent solutions (1D, λ>0)

Self-similar distribution

Cutoff velocity decays

Scaling function

Hybrid between steady-state and time dependent state

with Ben Machta (Brown)



A third family of solutions exists

Numerical confirmationNumerical confirmation

Velocity distribution Scaling function



Extreme statisticsExtreme statistics

Scaling function

Large velocities: as in free cooling

Small velocities: non-analytic behavior  

Hybrid between steady-state and time dependent state

Maxwell Model (λ=0) only unsolved case!



SummarySummary

Time dependent solution

Time independent solution

Hybrid solution

Are there other types of solutions?



ConclusionsConclusions

New class of nonequilibrium steady states
Energy cascades from large to small velocities
Power-law high-energy tail
Energy input at large scales balances dissipation
Associated similarity solutions exist as well
Temperature insufficient to characterize velocities 
Experimental realization: requires a different driving 
mechanism



OutlookOutlook

Spatially extended systems
Spatial structures
Polydisperses granular media
Experimental realization

E. Ben-Naim and J. Machta, Phys. Rev. Lett.  94, 138001 (2005)

E. Ben-Naim, B. Machta, and J. Machta, cond-mat/0504187



Driven Granular gasDriven Granular gas

Vigorous driving
Spatially uniform system
Particles undergo binary collisions
Velocities change due to 

1. Collisions: lose energy
2. Forcing: gain energy

What is the typical velocity (granular “temperature”)?

What is the velocity distribution?



Comparing kinetic theoriesComparing kinetic theories
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